Innovations in Wound Care

The role of wound cleansing in the management of wounds

Sponsored by

Faculty

Speaker
Martha Kelso, RN, HBOT, CEO, WCP
Wound Care Plus, LLC

Moderator
Melissa Warner, EVP
Wound Care Advisor

Agenda For Today

This 30-minute presentation will feature learning opportunities that will provide in-depth instruction and demonstration in wound care treatments. After this webinar, the learner will be able to:

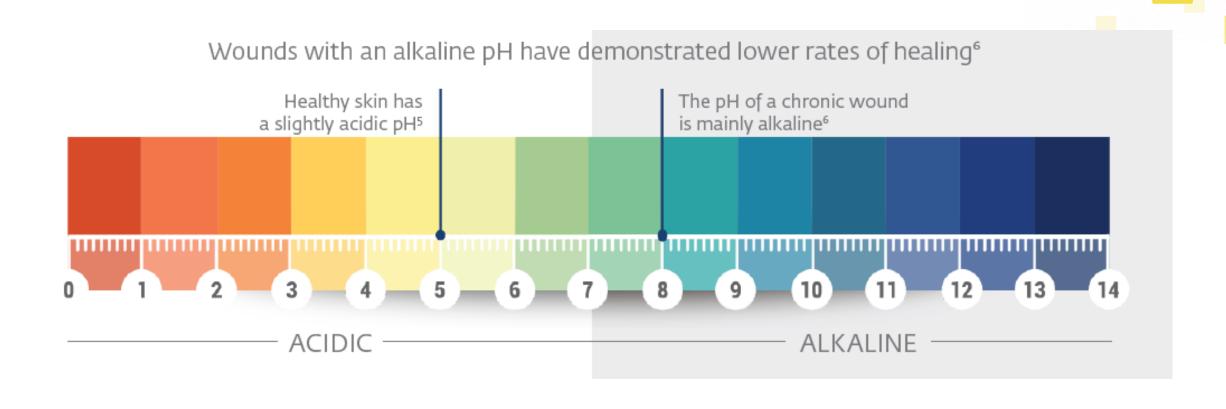
- Identify the role of proper wound cleansing
- Discuss how to select and use non-toxic wound cleansers
- Describe advantages of collagen for managing a chronic wound

Objectives

At the end of this webinar, the learner will be able to:

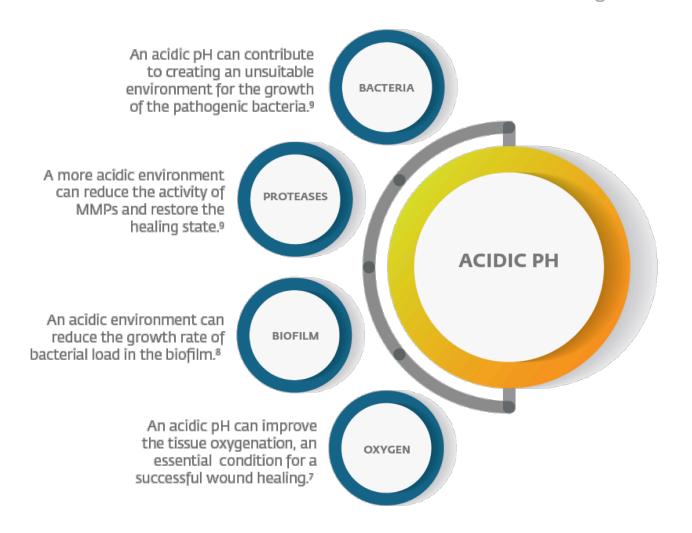
- Identify the role of proper wound cleansing
- Discuss how to select and use non-toxic wound cleansers

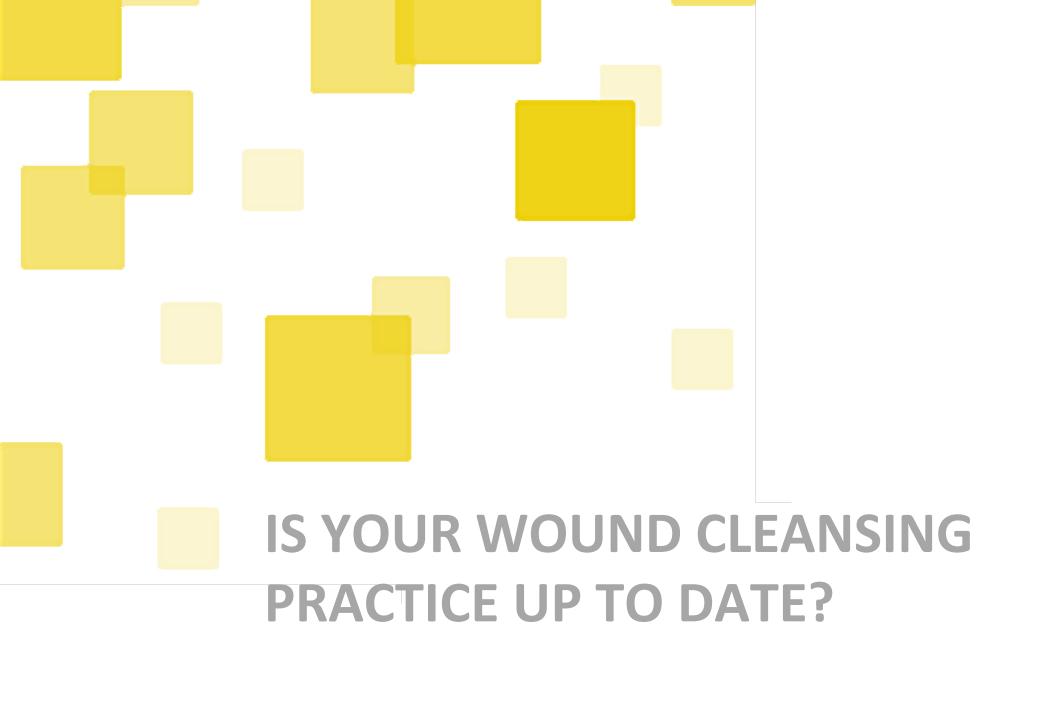
- A) The wound microenviroment
- B) Is your wound cleansing practice up to date?
 - Cleansing and its role
 - Basic Cleansing Techniques
 - When not to clean a wound
- C) The ideal wound cleanser
- D) The use of hypochlorous acid as a wound cleanser
- E) Clinical Case studies



Wound microenvironment of chronic wounds represents a major therapeutic challenge¹

The most relevant factors that influence the **healing process** are:




The importance of pH in wound healing

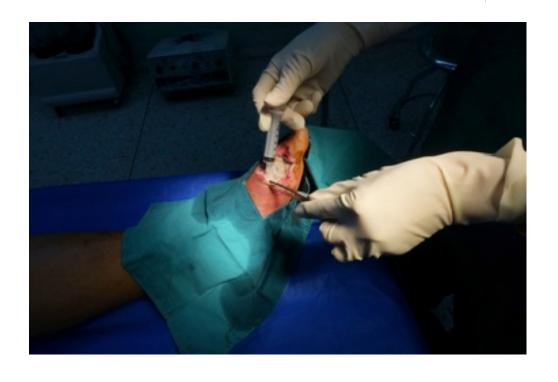
The importance of acidic pH

"An acidic environment in a wound bed is an additional benefit that can contribute to reboot the wound towards healing"

Is your wound cleansing practice up to date?

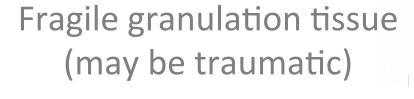
An ideal wound cleanser should modulate the wound microenvironment balancing the management of key components with preservation of tissue safety¹¹

Is your wound cleansing practice up to date?


"Basing cleansing techniques"

Swabbing

(use items that don't leave debris in wound bed)



Is your wound cleansing practice up to date?

"When not to clean a wound"

Dry gangrenous wounds (want to keep dry)

When you ask your patient about their basic wound care at home.... what is the usual (and unfortunate) answer?

"Antiseptic"

- Research has shown that antiseptics have a negative impact on healing wounds (Atiyeh, et.al. Int Wound J. 2009)
- Antiseptic categories include alcohols, iodine,
 Chlorhexidine Gluconate (CHG), silver, hydrogen peroxide
- Antiseptics can be used in the right situations, and durations

There are **several broad categories** of solutions that can be used:

66

Wound cleansing can help to achieve the goals of wound bed preparation by removing microorganism, biological and enviromental debris¹²

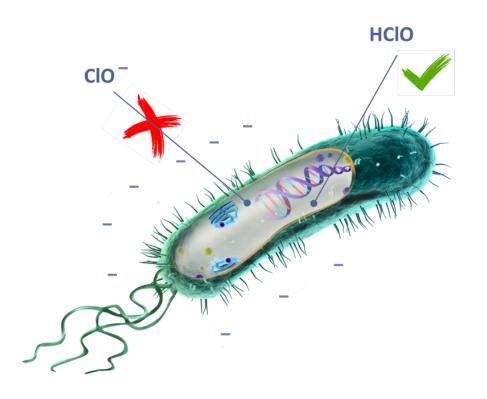
HYPOCHLOROUS ACID **Hypochlorous acid** is produced by the body's immune cells in response to invading pathogens. When used as wound cleanser ingredient, it acts as a preservative by **inhibiting the growth of microorganisms** within the solution¹²

SALINE SOLUTION

Saline solution does not generally contain a preservative, so bacterial growth can occur once exposed to opportunistic microorganisms¹²

SODIUM HYPOCHLORITE **Sodium hypochlorite** is familiar to HCPs as Dakin's solution (0.5% sodium hypochlorite). Dakin's solution can be **injurious** to the wound tissue and can slow down wound healing¹²

The characteristics of an ideal wound cleanser

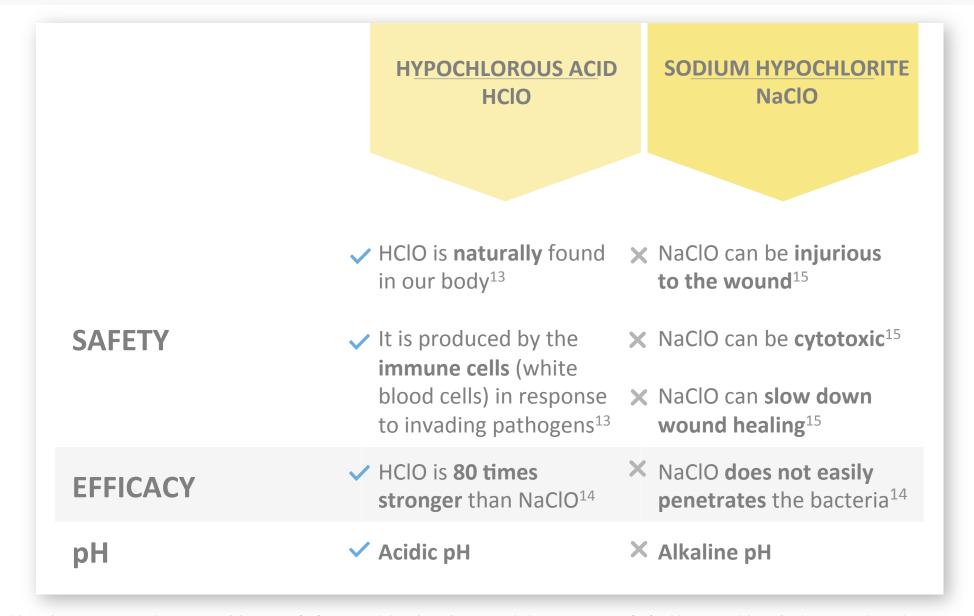

- The ideal wound cleanser should be non-cytotoxic to tissue
- The ideal wound cleanser should decrease colonization of the wound bed
- The ideal wound cleanser should be cost-effective and stable
- The ideal wound cleanser should not be an alkaline pH

The use of hypochlorous acid as a wound cleanser

Hypochlorous acid is one of the major inorganic bactericidal compound of **innate immunity** and it is **effective against a broad range of microorganisms**

Although they look similar, hypochlorous acid and sodium hypochlorite are still very different

The cell wall of pathogens is **negatively charged**


HClO can easily penetrate the cell wall and destroy the pathogens from the inner of the cell.

ClO⁻/sodium hypochlorite <u>can not</u> easily penetrate the wall of pathogens

At the same concentration, the biocidal activity of HClO is 80 times stronger than ClO⁻

The use of hypochlorous acid as a wound cleanser

Clinical cases (1/3)

- AGE, SEX: 48, male
- WOUND ONSET: 15 years before treatment with a wound cleanser containing hypochlorous acid
- COMORBIDITY: severe
 - Essential hypertension
 - Lymphoma: in 1999
 - Epilepsy
 - Valvular heart disease
 - Osteomyelitis of the knee in 2010
- CASE HISTORY BEFORE NEXODYN:
 - Traffic accident with left lower limb severe injury. Subsequent alteration of vascular architecture with the appearance of a large ulcer on the lower third of the left leg after chemotherapy, due to a car accident about 15 years ago
 - Large ulcer on the left leg (lower 1/3) treated with cycles of hyperbaric oxygen therapy. Since then, the lesion has never come to resolution.
 - From November 2011 to June 2013, the patient underwent 4 surgeries with engineered graft and skin graft without any benefit, with the exception of wound depth, becoming superficial.

Clinical cases (1/3)

Large ulcer on the left leg (lower 1/3)

From T0 to ≈ 10 months after

Time (days)	Tissues	Exudate	Depth	Area (cm²)	VAS (pain)
0	Colonized	Hyperexudating	Superficial	250	7
12	Colonized	Average	Superficial	250	6
42 (≈1.5 m)	Cleansed	Controlled	Superficial	215	4
183 (≈6 m)	Re-epithelising	Controlled	Superficial	184	2
302 (≈10 m)	Re-epithelising	Controlled	Superficial	135	2
Result	Improved	Improved	Unchanged	-46.0%	-71.4%

Clinical cases (2/3)

- AGE: 31
- SEX: male
- WOUND ONSET: 2 years before treatment with a wound cleanser containing hypochlorous acid
- COMORBIDITY: severe
 - Young refractory severe obesity; sleeve gastrectomy in 2010 (pre-surgery weight 227 kg; 148 kg in 2011)
 - Psoriatic arthritis
 - Very large peripheral and lower edemas on a lymphostatic basis
- CASE HISTORY:
 - Stasis ulcer that does not tolerate the bandage
 - DE grafting with improvement on 06/2013
 - Very low compliance
 - Constant infections

Clinical cases (2/3)

Stasis ulcer that does not tolerate the bandage

From T0 to ≈ 9.5 months after

Time (days)	Tissues	Exudate	Depth	Area	VAS (pain)
0	Infected	Hyperexudating	Deep	300	8
22	Cleansed	Average	Superficial	250	5
155 (≈5 m)	Cleansed	Average	Superficial	180	2
236 (≈7.5 m)	Cleansed	Hyperexudating	Superficial	150	2
295 (≈9.5 m)	Cleansed	Poor	Superficial	118	2
Result	Improved	Improved	Improved	-60.66%	-75%

Clinical cases (3/3)

- AGE: 83
- SEX: male
- WOUND ONSET: 2.5 years before treatment with a wound cleanser containing hypochlorous acid
- COMORBIDITY: severe
 - Benign prostatic hyperplasia with previous
 TURP (Transurethral resection of the prostate)
 - Hypertension
 - Post-thrombotic syndrome on the right leg

- Lipotimic episodes
- Paroxysmal atrial fibrillation
- Chronic carential anaemia

• CASE HISTORY:

- April 2012: hospitalization with a diagnosis of bilateral ulcers of the lower limbs by pyoderma gangrenosus and polimicromic super-infection, with severe sepsis, eurhythmic paroxysmal atrial fibrillation by wandering pacemaker at heparin in coagulant dosage, mild heart failure, anasarcatic condition in severe protein-caloric malnutrition, psychomotor agitation with delirium perhaps iatrogenic in nature (carbapenem and opiates), suspected sleep apnea syndrome.
- April 2013: new hospitalization for re-grafting

Clinical cases (3/3)

Bilateral ulcers of the lower limbs

From T0 to ≈ 9 months after

Time (days)	Tissues	Exudate	Depth	Area (cm²)	VAS (pain)
-455 (≈15 m)	Slough	Hyperexudating	Superficial	160	6
-70 (≈2 m)	Slough	Hyperexudating	Superficial	140	6
0	Slough	Hyperexudating	Superficial	120	5
Result	Unchanged	Unchanged	Unchanged	-25%	-17%
		START OF TREATME	NT WITH NEXODYN		
0	Slough	Hyperexudating	Superficial	120	5
190 (≈6 m)	Slough	Average	Superficial	70	2
275 (≈9 m)	Slough	Poor	Superficial	38	1
Result	Improved	Improved	Unchanged	-68.33%	-80%

Thank you to Angelini for sponsoring this webinar

We will take a few minutes to review.....

Product features

NEXODYN® can support the physiological healing process

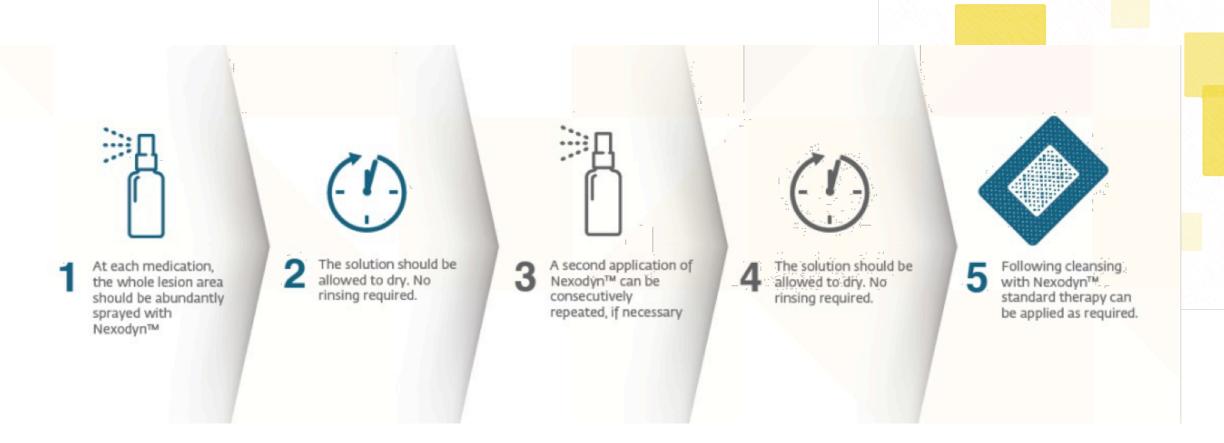
NEXODYN® is a FDA-cleared hypochlorous acid-based wound cleanser, developed for topical treatment in the field of acute and chronic wound management

MAIN PRODUCT FEATURES

- \checkmark Acidic pH (2.5 3.0)
- ✓ High purity (>95% of free chlorine species derived from HCIO)
- ✓ Free Chlorine species: 40-70 ppm
- ✓ Long stability: 30 days from first opening

The mechanical action of the fluid flowing across the lesion can help to remove biologic and inert materials such as microorganisms, biological debris and environmental dirt

Bacterial activity tests


The **antimicrobial** preservative effectiveness of HClO has been demonstrated against the **organisms** in the table below in *in vitro* testing (Time Kill Assay):

Pathogenic Bacteria	Log Reduction / Exposure Time
Staphylococcus aureus	99.9992% (5.11 Log ₁₀) after 15 sec
Staphylococcus pyogenes	99.9958 % (4.38 Log ₁₀) after 15 sec
Staphylococcus epidermidis	99.9499% (3.30 Log ₁₀) after 15 sec
Pseudomonas aeruginosa	>99.9999% (> 6.11 Log ₁₀) after 15 sec
Escherichia coli	>99.999% (> 5.55 Log ₁₀) after 15 sec
Multi-drug resistant (MDR) Staphylococcus aureus	>99.999% (> 5.44 Log ₁₀) after 15 sec
Extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaciae	>99.9999% (> 6.23 Log ₁₀) after 15 sec
Vancomycin intermediate resistant Staphylococcus aureus (VISA)	>99.999% (>5.84 Log ₁₀) after 15 sec
Multi-drug resistant (MDR) and OXA-48 producing Klebsiella pneumoniae	>99.999% (> 5.32 Log ₁₀) after 15 sec
Extended-spectrum beta-lactamase (ESBL) producing Proteus mirabilis	>99.999% (>5.99 Log ₁₀) after 15 sec
Multi-drug resistant (MDR) Escherichia coli	>99.999% (>5.92 Log ₁₀) after 15 sec
Candida albicans	>99.999% (>5.01 Log ₁₀) after 15 sec

How to use NEXODYN®

Applying NEXODYN® on wounds is fast and simple

The right tools make all the difference for your patients!

Wholesale Medical Supplies NATIONWIDE DISTRIBUTION

Delivered to your patient's home

References

- (1) Kruse CR et al (2015): Wound Repair and Regeneration 23(4): 456–464
- (2) Caley MP et al (2015): Advances in Wound Care 4(4): 225-234
- (3) Watters C et al (2015): Chronic Wound Care Management and Research 2: 53-62
- (4) Castilla DM et al (2012): Advances in Wound Care 1(6): 225-230
- (5) Lambers H et al (2006): *J Cosmet Sci 2006; 28: 359*–370
- (6) Gethin G (2007): Wounds UK, 2007:3/3
- (7) Greener B et al (2005): J Wound Care 14(2): 59-61
- (8) Hostacka' A et al (2010): Folia Microbiol. 55 (1): 75–78
- (9) Basavraj S et al (2015): Wounds 27(1):5-11
- (10) McLain N and Moore Z (2015): Cochrane Database of Systematic Review, 4 (CD01167)
- (11) Main RC (2008): J Wound Care 17(3): 112-114
- (12) Wolcott R et al (2014): Wounds International (3): 25-31
- (13) Armstrong DC et al (2015): Ostomy Wound Manage 61(5):S2-S19
- (14) Rossi-Fedele G (2011): J Int. Endod. J 44: 792-799
- (15) Hildago E et al (2002): Chemico-Biological Interactions 139: 265-282
- (16) Kelso, Martha. (March 16, 2018). The Role of Hypochlorous Acid in Managing Wounds: Reduction in Antibiotic Usage. Retrieved from http://www.woundsource.com/blog/role-hypochlorous-acid-in-managing-woundsreduction-in-antibiotic-usage

